Part 2: Consumption

What a household does.

- Household
- Consumes bundels of goods (x₁, x₂, z)
 - Private (consumption) goods (x_1, x_2)
 - Public goods (z)
- Goal: maximization of utility
- Constraint: household budget/income
- Income = wage income => labor supply

Private consumption goods

Durable/non-durable goods

Public goods (classical)

- Non-excludability
- Non-rivalness

Impure public goods

Impure public goods:

Violated: non-excludabilty, non-rivalness

Impure public goods: infrastructure

Source: http://www.vohwinkel.net/ortsteile/dasnoeckel.htm, http://signalarchiv.de/Meldungen/pics/200904_s-bahn-chaos_9.jpg

Types of goods

Services

Types of goods

Other services:

McKinsey&Companyl

accenture

in tendency: non-tangible, non-durable

Which goods can be traded?

- Classical view:
 - transportable => tangible goods
 - durable and non-durable goods
 - shoes, but also apples
 - technology => transportability
 - (e.g. frozen food, green bananas)
 - services assumed to be non-tradable (incl. building s.th. in a foreign country)
 - infrastructure non-tradable

Which goods can be traded?

- Modern view:
 - includes services
 - service sector includes knowledge transfer examples for tradable services:
 - * consultancy, teaching in foreign countries
 - * IT-related services
 - * constructing services abroad (e.g. Dubai)
 - * mining services abroad
 - * services by cooks, hairdressers, physicians

Utility

- Utility
 - Well-being, welfare, happiness
 - Greek philosophy: roots
 - what human beings strive for in life
 - Aristotle: eudaimonia
 - J. Bentham: Utilitarism
 - Economics: household's goal
 - Mathematics: target function

Consumer preferences I

 Consumers asseses (consumption) goods according to their ,value to her and ranks them

Example:

VS.

Abstract: good x vs. good y

Consumer preferences II

Complete

- x, $z \in X$: $x \ge y$ or $y \ge x$ or both

Reflexive:

 $-x \in X: x \geqslant x$

Transitive

-x, z, $y \in X$: if $x \ge y$, and $y \ge z$, then $x \ge z$

Consumer preferences III

- Eating the apple preferred over eating chocolate:
 - apple > chocolate
- ⇒utility(apple) > utility(chocolate) or:
- ⇒Domestic apple ≥ foreign apple
- ⇒utility (dom. apple) ≥ utility (foreign apple)

Consumer preferences and utility

Complete

- $-x \ge y$ or $y \ge x$ or both => $U(x) \ge U(y)$ or $U(y) \ge U(x)$ or both
- Transitive
 - x, z, y e X: if $x \ge y$, and $y \ge z$, then $x \ge z$ => if $U(x) \ge U(y)$, and $U(y) \ge U(z)$, then $U(x) \ge U(z)$

=> Utility function as way of ordering people's preferences

Some more on preferences I

Strong monotonicity:

```
if x \ge y and x \ne y, then x > y
```

Continuity:

```
if x^i \ge y, and if \lim x^i = x^*, then x^* \ge y
```

=> utility function is continuous

Some more on preferences II

Strict convexity: x, y, z e X, x ≠ y, 1 > t > 0
x ≥ z, and y ≥ z: tx + (1-t)y > z

good A

Some more on preferences II

Strict convexity: x, y, z ε X, x ≠ y, 0 < t < 1
x ≥ z, and y ≥ z: tx + (1-t)y > z

 $z \ge y$ " or y" $\ge z$ or both

x > z, y > z

violet line: bundles preferred over z

Strict convexity: $x \ge z$, and $y \ge z$: tx + (1-t)y > zstrong monotonicity if $g \ge x$ and $g \ne x$, then g > x

- 1. $x = z => x \sim z$
- 2. violet line > z if $y \ge z$

- 3. strong monotonicity: y!>z
- 4. Strict convexity $=> x \sim y$

Graphical representation

 \Rightarrow U(x) = U(z) = U(y)

Indifference curve

Graphical representation

Utility mountain

consumption of two goods

$$U = x * y$$

Source: http%3A%2F%2Fwww.wiwi.uni-frankfurt.de%2Fprofessoren%2Fspahn%2Flehre%2Fppt%2Fmicro%2F01.ppt&rct=j&q=Nutzengebirge&ei=AzmXTuLMAoTdsgbWg6iHBA&usg=AFQjCNG5enQaM7pTUD-7Ohg98_g7d23Y1Q&cad=rja

U = sqrt(x*y)

Source: http://3A%2F%2Fwww.wiwi.uni-frankfurt.de%2Fprofessoren%2Fspahn%2Flehre%2Fppt%2Fmicro%2F01.ppt&rct=j&q=Nutzengebirge&ei=AzmXTuLMAoTdsgbWg6iHBA&usg=AFQjCNG5enQaM7pTUD-7Ohg98_g7d23Y1Q&cad=rja

- Three types of cuts possible:
 - Vertical cut parallel to the x-axis => U(x) with y fixed
 - As y grows bigger, distance to x-axis increases
 - Parallel to the y-axis => U(y) with x fixed
 - Horizontal cut parallel to x-y-plane: U fixed (with x and y varying)

Vertical cut

U = (x, y fixed)

dU/dx > 0; $d^2U/dx^2 < 0$

marginal utility is positive, but declines

marginal utility is positive, but declines

Horizontal cut

Critique

- Utility not empirically observable
- Observable: choice (revealed preferences)

 Joan Robinson: "Utility is the quality in commodities that makes individuals want to buy them, and the fact that individuals want to buy commodities shows that they have utility" (Robinson 1962)